Game theoretical semantics for some non-classical logics

نویسنده

  • Can Baskent
چکیده

Paraconsistent logics are the formal systems in which absurdities do not trivialise the logic. In this paper, we give Hintikka-style game theoretical semantics for a variety of paraconsistent and non-classical logics. For this purpose, we consider Priest’s Logic of Paradox, Dunn’s First-Degree Entailment, Routleys’ Relevant Logics, McCall’s Connexive Logic and Belnap’s four-valued logic. We also present a game theoretical characterisation of a translation between Logic of Paradox/Kleene’s K3 and S5. We underline how nonclassical logics require different verification games and prove the correctness theorems of their respective game theoretical semantics. This allows us to observe that paraconsistent logics break the classical bidirectional connection between winning strategies and truth values. ARTICLE HISTORY Received 10 October 2015 Accepted 15 August 2016

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Truth Values and Connectives in Some Non-Classical Logics

The question as to whether the propositional logic of Heyting, which was a formalization of Brouwer's intuitionistic logic, is finitely many valued or not, was open for a while (the question was asked by Hahn). Kurt Gödel (1932) introduced an infinite decreasing chain of intermediate logics, which are known nowadays as Gödel logics, for showing that the intuitionistic logic is not finitely (man...

متن کامل

Some Non-Classical Methods in (Epistemic) Modal Logic and Games: A Proposal

In this proposal, we discuss several non-classical frameworks, and their applications in epistemic modal logic. We largely consider topological semantics, as opposed to widely used Kripke semantics, paraconsistent systems, as opposed to consistent systems, and non-well-founded sets, as opposed to ZF(C) set theory. We discuss topological public announcement logics, introduce homotopies to modal ...

متن کامل

Hintikka-Style Semantic Games for Fuzzy Logics

Various types of semantics games for deductive fuzzy logics, most prominently for Lukasiewicz logic, have been proposed in the literature. These games deviate from Hintikka’s original game for evaluating classical first-order formulas by either introducing an explicit reference to a truth value from the unit interval at each game state (as in [4]) or by generalizing to multisets of formulas to ...

متن کامل

Propositional mixed logic: its syntax and semantics

In this paper, we present a propositional logic (called mixed logic) containing disjoint copies of minimal, intuitionistic and classical logics. We prove a completeness theorem for this logic with respect to a Kripke semantics. We establish some relations between mixed logic and minimal, intuitionistic and classical logics. We present at the end a sequent calculus version for this logic.

متن کامل

Possible-translations semantics for some weak classically-based paraconsistent logics

This note provides interpretation through possible-translations semantics for a couple of fundamental paraconsistent logics extending the positive fragment of classical propositional logic. The logics PI, Cmin, CLuN, bC, Ci, among others, are all initially presented through their bivaluation semantics and sequent versions and then split by way of possible-translations semantics —the set of 3-va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Applied Non-Classical Logics

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2016